
Copyright  2004 by the Genetics Society of America
DOI: 10.1534/genetics.103.025536

Letter to the Editor
Reversible-Jump Markov Chain Monte Carlo for Quantitative Trait Loci Mapping

Remy van de Ven1

New South Wales Agriculture, Orange, New South Wales 2800, Australia

Manuscript received December 8, 2003
Accepted for publication March 11, 2004

OVER the past decade there has been a significant in the QTL mapping problem. We illustrate the basis
of this error with a simplified example.increase in the application of Markov chain Monte

As our example we assume that we have a data set ofCarlo (MCMC) methods to modeling data. This can
n observations such that, for a given s, � � (�1, . . . ,largely be attributed to the renewed interest in Bayesian
�s) and covariate values (x1, x2, . . . , xn)methods and the increasing power of modern comput-

ers. A useful introduction to MCMC methods and their
Yi � �

s

j�1

I(xi � �j) � εi ,applications is given in Gilks et al. (1996). Another area
of statistics that has expanded over the past decade is the
development of statistical methods to map quantitative where I(·) denotes the indicator function and
trait loci (QTL). It was thus inevitable that MCMC meth- εi �

ind
N(0, �2) . We assume for simplicity that �2 is known

ods would eventually be utilized in QTL mapping. An to equal 1. Hence the mean is a step function, with s
early example of this approach is by Satagopan et al. steps at positions �j ( j � 1, . . . , s). The steps can be
(1996), who use MCMC methods to map a given number considered equivalent to QTL locations. For priors on s
of QTL. and � we let Pr(s � k) � qk (k � 0, . . . , 9; �9

k�0qk � 1)
A valuable contribution to MCMC methods came in and let �|s be a simple random sample (without replace-

ment) from {0.1 (0.1) 0.9}.an article by Green (1995) wherein the MCMC methods
We now use an MCMC algorithm to generate sampleswere extended, using the Metropolis-Hastings algo-

from �(�, s|Y, x), using a Metropolis-Hastings approachrithm, to include varying dimension problems. This ex-
to sample new elements of � and a RJ-MCMC algorithmtension, termed reversible-jump MCMC (RJ-MCMC)
to sample s.was soon taken up by the developers of methods to map

Sampling �j (j � 1, . . . , s): We let the proposal �*jQTL as it allowed the number of QTL to be included
be one of the admissible values for �j with equal proba-in the model as an unknown. Examples include Ste-
bility. If εi and ε*i are the residuals under the currentphens and Fisch (1998), Sillanpää and Arjas (1998),
and proposed (i.e., �*j replacing �j) models, respectively,Yi and Xu (2002), and Yi et al. (2003).
the acceptance probability for this proposal is min{1,A problem with application of RJ-MCMC is that care
�}, wheremust be taken in determining the acceptance probabil-

ity for dimension change. As is shown below, some re-
� �

exp{�0.5�n
i�1(ε*i )2}

exp{�0.5�n
i�1(εi)2}

.cent publications have determined this value incor-
rectly. This is partly understandable given that the
Green (1995) article is rather mathematical. It uses This step causes no concern.
measure theory in its presentation, thus making it less Sampling s: Let the proposal s* equal s � 1 with proba-
accessible to those less mathematically inclined. To over- bility p b(s) and equal s � 1 with probability pd(s) � 1 �
come this Waagepetersen and Sorensen (2001) pre- p b(s). We let p b(0) � 1, p b(k) � 0.5 (k � 1, . . . , 8), and
sented an excellent tutorial that largely avoids measure p b(9) � 0.
theory. The purpose of this note is to draw attention to When deleting a step we choose at random with equal
an error that appears to be propagating in the literature probability one of the steps for removal, whereas when
for the acceptance probability of a dimension change adding a new step, we sample the location of the new

step �* at random from the admissible steps. One other
crucial component of the birth process, overlooked by
some, needs to be defined. This is to determine where
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equal probability [i.e., 1/(s � 1) when we have s steps selected for inclusion or removal, retain their same rela-
tive order. But there is no need to constrain the labelingin the current model].

Using this approach for removing or adding a step to an ordered set of numeric values. We could equally
have used any form of label (e.g., personal names, Greekgiven s steps currently in the model, the acceptance

probability for the proposal is min{1, �}, where � is letters) and with a change in dimension reallocate la-
bels, possibly a completely different set for each value
of s. Under this approach, if there are s � 1 steps inAdd a step: � �

exp{�0.5�n
i�1(ε*i )2}

exp{�0.5�n
i�1(εi)2}

	
qs�1

qs

	
pd(s � 1)

pb(s) the current model, s � 1 steps can be selected for re-
moval and then there are s! ways to relabel the retained

Drop a step: � �
exp{� 0.5�n

i�1(ε*i )2}
exp{�0.5�n

i�1(εi)2}
	

qs�1

qs

	
pb(s � 1)

pd(s)
. steps. On the other hand, if there are s steps in the

current model and a new step is proposed, there are (s �
Again εi and ε*i denote the residuals under the current 1)! ways to relabel the steps. Hence, using this approach
and proposed models, respectively. The derivations of when sampling s again gives, as expected, the same
the acceptance probabilities follow from the results in acceptance probability for the proposal.
Green (1995) and Waagepetersen and Sorensen To illustrate the effect of including and excluding
(2001). the probability associated with the choice of position

This expression differs from that of Sillanpää and we have conducted a limited simulation study. Here we
Arjas (1998), Yi and Xu (2002), and Yi et al. (2003) have set s � 5 with steps located at 0.1, 0.3, 0.5, 0.6, and
who have effectively (ignoring all the other parameters 0.8. Also, we let qk � 0.1, k � 0, . . . , 9. Ten data
in the QTL mapping context) used the above but with sets were generated with each data set composed of 50
pd(s
) replaced by pd(s
) 	 (1/s
). That is, they have observations. The independent vector x was composed
retained the probability for selecting the particular step of five replicates at each of the points {0.05 (0.1) 0.95}.
for removal but have not included the probability for For each data set an MCMC sample was generated of
selecting the position when adding a step. This account- length 11,000 but with the first 1000 states discarded.
ing for the positioning of the added step is essential for In each case the starting value for the chain had s � 0
balance and reversibility, properties that form the basis steps in the model. Using the correct acceptance proba-
of the formulation of the RJ-MCMC algorithm. Two bilities as given above, the most frequently occurring
points should be noted here. First, the position of a model (MFOM) was the correct model for five of the
new step need not be selected with equal probability, simulations, the third MFOM for two simulations, and
but if a position is selected with probability zero, then the fourth MFOM for one. Also, for all but one simula-
its counterpart must also to be selected with probability tion the MFOM had the minimum residual sum of
zero. For example, if the location �* for a proposed squares (SS). For the exception, the second MFOM had
addition were always placed at the end of the current the minimum residual SS. On the other hand, if for the
vector �, then a legitimate RJ-MCMC algorithm can be same data sets samples are generated using the above
formulated provided that, when removal of a step is MCMC algorithm but now excluding the probability
contemplated, the last element of � is selected with associated with the choice of position in the acceptance
probability one. This situation is covered in Waagepet- probability when sampling s, we obtain vastly different
ersen and Sorensen (2001). It has the disadvantage outcomes. In all 10 simulations the MFOM contained
that the resulting chain will not mix as well. It could, only one step.
however, as suggested in Waagepetersen and Sorensen We see therefore that failure to account for the ran-
(2001), be used in conjunction with an additional step dom positioning of a step in the current vector of steps
being a “shuffle” of the order of the elements of �. This can have a large effect on model selection. The extent
shuffle would always be accepted and would give rise of the effect of this error remains to be seen in the QTL
to an MCMC algorithm as outlined above. The second mapping context. Indications are that it may not be so
point is that an MCMC algorithm incorporating the influential given that published simulations, based on
error identified can be shown to be a correct algorithm samples generated using an MCMC algorithm with the
for a modified model. This modified model has a prior error, appear to give reasonable results. Or maybe the
for the distribution of s, the number of steps, propor- error is in the description rather than in the actual
tional to qk/k!, thus penalizing severely models with computer code.
more steps. The author thanks the two referees for constructive comments

As an aside, another way of thinking about the prob- and Robin Thompson of Rothamsted Research, United Kingdom, for
introducing him to this topic.lem is to consider it as a labeling issue. We need to

assign labels to the steps so they are identifiable for
selection at the removal stage. So when a step is added
or deleted the steps then need to be relabeled. Above LITERATURE CITED
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